Not Too fast, Not Too Slow: Striking the Optimal Balance in Hemodialysis Fluid Management

ANNA/ IPRO Spring Symposium
May 24, 2018

Jennifer E. Flythe, MD, MPH
Assistant Professor of Medicine
University of North Carolina Kidney Center
Disclosures

• **Funding**: NIH/ NIDDK, PCORI, Robert Wood Johnson Foundation, and Renal Research Institute (a subsidiary of Fresenius Medical Care)

• **Speaking Honorarium**: Dialysis Clinic, Inc., Fresenius Medical Care, Renal Ventures, American Renal Associates, American Society of Nephrology, Baxter, multiple universities
Outline

- Fluid management: the conundrum
- Ultrafiltration rate and outcomes
- Extracellular volume overload and outcomes
- Clinical cases and management strategies
Fluid management: the conundrum
Call for “Volume First” Approach

“Good fluid management” identified as “one of the most essential unmet needs of the contemporary dialysis population.”

| Extracellular volume | Fluid removal rate | Interdialytic weight gain |
Hemodynamic instability
• End-organ ischemia
• Patient discomfort

Hypovolemia

Overly rapid ultrafiltration rate

Hypertension
• Ventricular hypertrophy
• Heart failure, arrhythmia
• Patient discomfort

Overly slow ultrafiltration rate

Hypervolemia
Hypovolemia

Overly rapid ultrafiltration rate

Overly slow ultrafiltration rate

Hypervolemia
They said [cramps] are close to what a man feels like having a baby. If that's the way it is, boy, I wouldn’t want to have one. [60y M]

As soon as the cramps start, I’m yelling’. You never die, but it's so painful that you think that you do. [55y F]

It feels terrible because sometimes I'll be gasping for breath. I start crying because I can't breathe. It's like my own lungs is shutting down and I just can't get the breath that I need. [49y F]

I just kind of panic when I can’t get a deep breath. It’s like I feel like I’m going to smother. [76y F]

Ultrafiltration rate and outcomes
Ultrafiltration rate

\[
\text{UF rate (mL/h/kg)} = \frac{\text{IDWG (mL)}}{\text{TT (h)}} / \text{Post-weight (kg)}
\]

UF = ultrafiltration

IDWG = interdialytic weight gain

TT = treatment time (dialysis session length)
Higher UF rate → death

Higher UF rate \rightarrow death

- U.S. cohort (N=118,394)

<table>
<thead>
<tr>
<th>UF rate (mL/h/kg)</th>
<th>All-cause mortality</th>
<th>Adjusted HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>10 (vs. ≤10)</td>
<td></td>
<td>1.22 (1.20-1.24)</td>
</tr>
<tr>
<td>>13 (vs. ≤13)</td>
<td></td>
<td>1.31 (1.28-1.34)</td>
</tr>
</tbody>
</table>

- Consistent across sex, race, ethnicity, vintage, and treatment time
- Consistent when considered relative to weight (kg), BMI (kg/m2), and BSA (m2)

Higher UF rate → death

- U.S. cohort (N=118,394)

<table>
<thead>
<tr>
<th>UF rate (mL/h/kg)</th>
<th>All-cause mortality Adjusted HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td><6</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>6-8</td>
<td>1.03 (1.00-1.07)</td>
</tr>
<tr>
<td>8-10</td>
<td>1.09 (1.06-1.12)</td>
</tr>
<tr>
<td>10-12</td>
<td>1.15 (1.12-1.19)</td>
</tr>
<tr>
<td>12-14</td>
<td>1.22 (1.18-1.27)</td>
</tr>
<tr>
<td>>14</td>
<td>1.43 (1.39-1.48)</td>
</tr>
</tbody>
</table>

Higher UF rate \rightarrow longer recovery time

- U.S. cohort (N=2,689)
UF rate > plasma refill rate \(\Rightarrow \) hypotension
Intradialytic hypotension (IDH) → death

- N=39,497 incident HD patients (U.S.)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>(+) IDH in >10% tmts</th>
<th>Adjusted HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality</td>
<td>1.19 (1.06 – 1.34)</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular (CV) mortality</td>
<td>1.22 (1.02 – 1.48)</td>
<td></td>
</tr>
<tr>
<td>Fluid overload hospitalization</td>
<td>1.22 (1.11 – 1.34)</td>
<td></td>
</tr>
<tr>
<td>Major CV event</td>
<td>1.29 (1.19 – 1.40)</td>
<td></td>
</tr>
</tbody>
</table>

Intradialytic hypotension (IDH) → death

- IDH: Nadir systolic BP < 90 mmHg in > 30% of treatments
- Prevalent HD patients

<table>
<thead>
<tr>
<th>IDH (vs. no IDH)</th>
<th>Adjusted OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialysis Org. Cohort (N=10,392)</td>
<td>1.30 (1.07 – 1.57)</td>
</tr>
<tr>
<td>HEMO Study cohort (N=1,753)</td>
<td>1.38 (1.11 – 1.71)</td>
</tr>
</tbody>
</table>

Hypotension
Hypervolemia
Cardiac Structural Change
Myocardial Stunning
↑ Ultrafiltration Rate
↓ Treatment Time
↑ Weight Gain
↑ Morbidity and Mortality

Hypo-perfusion of other vascular beds
Procedural modifications
Myocardial Stunning
Hypervolemia
Cardiac Structural Change

UF rate \rightarrow IDH \leftrightarrow cardiac stunning \rightarrow death

Higher UF rate \rightarrow other organ stunning \rightarrow death

Clinical Quality Indicator

Average UF rate >13 mL/h/kg
U.S. threshold: 10.1%

UF Rate Measure

% of patients in the facility with average UF rate ≥ 13 mL/h/kg
UF rate (mL/h/kg) = \frac{IDWG (mL)}{TT (h)} / Post-weight (kg)

UF = ultrafiltration
IDWG = interdialytic weight gain
TT = treatment time
Treatment time: patient preferences

- 15m TT extension: 44.6%
- 30m TT extension: 21.3%
- 45m TT extension: 9.7%
- 4th treatment: 12.2%

Treatment time: clinic operational burden

IDWG reduction via fluid restriction

- Fluid restrictions: poor adherence:
 - Surveyed 437 patients with fluid restrictions
 - >40% adhered to prescribed fluid restriction <1 day/ week

- Virtually impossible (and inhumane) in over-salted individuals

Extracellular volume overload and outcomes
Goal = extracellular euvolemia

Incorrect target weight (i.e. wrong “dry” weight)

Failure to achieve target weight
Target weight estimation in practice

Tools
- Blood volume monitor
- Bioimpedance
- Biomarkers
Extracellular volume overload (BVM) \rightarrow death

- U.S. cohort (N=308)
Extracellular volume overload \rightarrow death

- 26 country cohort
- Volume status by multi-frequency bioimpedance

Baseline fluid overload
$N=39,566$

1-year cumulative fluid overload
$N=22,845$

Post-dialysis weight > target weight \rightarrow death

- Italian cohort (N=182)
Post-dialysis weight > target weight → 30-day death

- U.S. cohort (N=113,561)

Extracellular volume overload \rightarrow fatigue

- 110 hemodialysis patients with multi-frequency biompedance

<table>
<thead>
<tr>
<th>Multivariable linear regression model (adjusted $R^2=0.41$)</th>
<th>Multi-dimensional fatigue inventory score β (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beck Depression Inventory</td>
<td>20.8 (<0.001)</td>
</tr>
<tr>
<td>Recovery time $>$8h</td>
<td>11.4 (0.001)</td>
</tr>
<tr>
<td>Post-HD %ECW/TBW</td>
<td>2.9 (0.002)</td>
</tr>
<tr>
<td>Muscle wasting</td>
<td>-5.7 (0.05)</td>
</tr>
</tbody>
</table>

UF rate minimization without volume expansion
Fluid management cases
Clinical Case 1

• 55y man
 • Diabetes, heart failure (EF 45%, history of hospitalizations)
 • Myasthenia gravis on bimonthly plasmapheresis

• Hemodialysis
 • IDWG = 3 - 4.5 kg
 • TT = 3.5 hours T-R-Sat
 • Target weight = 73 kg
 • Post-weights = ~73 kg
 • Anuric
 • Mean pre-HD systolic BP 110s
 • eKt/V = 1.6

UF rate = 11.7 – 17.6 mL/h/kg

Weekly mean
UF rate = 14.6 mL/h/kg

Asymptomatic hypotension
13 (mL/h/kg)
UF rate

= \frac{IDWG \; (kg)}{TT \; (h)}

\div

73 \; (kg)
Post-weight
Tuesday

- 4 h treatment
- weekend IDWG goal = <3.8 kg
- 1.3 L/day w 72 h break
- ~13 mL/h/kg

Thursday and Saturday

- 3.25 h treatment
- IDWG goal = <3 kg
- 1.5 L/day w 48 h break
- ~12.6 mL/h/kg

- 10.5 h/week treatment
- Actual mean UF rate = 12 mL/h/kg
Strategies

- Case 1: Longer treatments after the long interdialytic break
Clinical Case 2

• 49y man with hypertension

• Hemodialysis
 • Typical IDWG = 1 – 2 kg
 • TT = 3h M-W-F
 • Target weight = 51.5 kg
 • But… one Monday, IDWG: 4 kg

UF rate = 6.5 - 12.9 mL/h/kg

UF rate = 25.9 mL/h/kg
Take the long view

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
</table>

Goal: target weight achievement by the end of the week
Case: Finding the balance

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Wednesday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT</td>
<td>3 h</td>
<td>3 h</td>
<td>3 h</td>
</tr>
<tr>
<td>Target wt</td>
<td>51.5 kg</td>
<td>51.5 kg</td>
<td>51.5 kg</td>
</tr>
<tr>
<td>IDWG</td>
<td>4 kg</td>
<td>1 kg</td>
<td>1 kg</td>
</tr>
<tr>
<td>Pre-wt</td>
<td>55.5</td>
<td>54 kg</td>
<td>53 kg</td>
</tr>
<tr>
<td>UF volume</td>
<td>2.5 L</td>
<td>2 L</td>
<td>1.5 L</td>
</tr>
<tr>
<td>UF rate</td>
<td>16.2 mL/h/kg</td>
<td>12.9 mL/h/kg</td>
<td>9.7 mL/h/kg</td>
</tr>
<tr>
<td>Post-wt</td>
<td>53 kg</td>
<td>52 kg</td>
<td>51.5 kg</td>
</tr>
</tbody>
</table>

Success contingent on controlled IDWG for remainder of week
Strategies

- Case 1: Longer treatments after the long interdialytic break
- Case 2: Balance UF rate and fluid overload-related harms
Clinical Case 3

- 48y woman with vascular disease s/p L BKA, heart failure (EF 40%)

Hemodialysis
- Typical IDWG = 2.5 – 3 kg
- TT = 3.5h T-R-Sat
- Target weight = 82.0 kg

- Pre-HD SBP: 90s (nadir ~80 mmHg)
- Leg cramping ¾ way through treatment

UF rate = 8.7 - 10.4 mL/h/kg

Hypotension

Cramping
Identify and align goals

Medical Goals
- Minimize cardiovascular risk
- Avoid hypotension
- Prevent cramping

Patient Goals
- Spend time with family
- Pain-free dialysis
 - Cramping
 - Post-dialysis fatigue

Goal-directed Dialysis
- ↑ TT to 4 hours for 4 weeks
- Follow symptoms weekly (cramping, recovery time)
- (+) Patient-perceived improvement: maintain TT ↑
- (-) Patient-perceived improvement: return to prior TT
Strategies

- Case 1: Longer treatments after the long interdialytic break
- Case 2: Balance UF rate and fluid overload-related harms
- Case 3: Time-limited, symptom-guided trials (connect to patient goals)
Clinical Case 4

- 66y man with heart failure (EF 25%) with frequent hospitalizations

- Hemodialysis
 - Typical IDWG = 3 – 3.5 kg
 - TT = 4h M-W-F
 - Target weight = 70 kg
 - Post-HD weights (last 4 treatments)
 - Mon: 73 kg
 - Wed: 72 kg
 - Fri: 71.5 kg
 - Mon: 72 kg

UF rate = 10.7 - 12.5 mL/h/kg

Failure to achieve target wt
Target weight prescription and readmissions

- \(N = 44,460 \) patients with hospitalizations
- Exposure: target weight adjustment (vs. not) within 7 days of hospital discharge

<table>
<thead>
<tr>
<th># needed to treat</th>
<th>ED visit*</th>
<th>Readmission*</th>
<th>Composite outcome*</th>
</tr>
</thead>
<tbody>
<tr>
<td>114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*30-day outcomes

Target weight achievement vigilance

• Identify target weight achievement problem
 • Assess reasons (hemodynamics, symptoms, other)
 • Target weight adjustment? (exam, history, treatment tolerance and history)
 • Additional treatment?
 • Treatment time adjustment?
 • Other

• Take action
 • Root cause: single episode of large IDWG 10 days ago
 • Solution: add single extra treatment (2h) to return to target weight
Strategies

- Case 1: Longer treatments after the long interdialytic break
- Case 2: Balance UF rate and fluid overload-related harms
- Case 3: Time-limited, symptom guided trials
- Case 4: Target weight achievement vigilance and extra treatment
Clinical practice suggestions

• Case 1: Longer treatments after the long interdialytic break
• Case 2: Balance UF rate and fluid overload-related harms
• Case 3: Time-limited, symptom guided trials
• Case 4: Target weight achievement vigilance and extra treatment

• Lower interdialytic weight gain through a focus on sodium
• In-center nocturnal hemodialysis
• Send patients home
• Ultrafiltration profiling?

Strategy must be individualized and take into account patient preferences and treatment goals
Summary

• Higher UF rates are associated with adverse outcomes.

• Extracellular volume expansion is associated with adverse outcomes.

• Euvolemia achievement and UF rate minimization are both important. Their relative importance is unknown.

• Fluid management plans should be individualized based on patient risk profiles, preferences and, possibly, symptoms.
Feedback requested: Research Readiness Toolkit

1. WATCH → video
2. REVIEW → materials
3. TALK → discussion questions
4. RECORD → research preferences

Discussion Guide

Video

Written Materials

Lunch & Learn Module

Julia Narendra
UNC Dialysis Research Team
Questions?